Extension
OpenVINO™ Frontend Extension Samples with ConversionExtension
Authors: Wenyi Zou, Su Yang
The OpenVINO™ Frontend extension API enables the mapping of custom operations from framework model representation to OpenVINO representation. In this blog, two samples focus on the mapping to multiple operations with the ConversionExtension in practice.
Sample One: grid_sampler
This sample explains how to use Frontend ConversionExtension classes to facilitate the mapping of custom operations from ONNX model representation to OpenVINO™ representation. It enables writing arbitrary code to replace a single framework operation with multiple connected OpenVINO™ operations constructing dependency graph of any complexity.
When convert the ONNX model BEVFormer tiny to OpenVINO IR, the following error will occur.

Network BEVFormer tiny viewing with Netron, we can see the node of grid_sampler. As shown in Figure 1.1.

ONNX Nodes
Computation nodes are comprised of a name, the name of an operator that it invokes, a list of named inputs, a list of named outputs, and a list of attributes.
Input and outputs are positionally associated with operator inputs and outputs. Attributes are associated with operator attributes by name.
They have the following properties:

According to the node properties of ONNX, the node grid_sampler_631 op_type is grid_sampler, the domain is mmdeploy. We can use ov::frontend::onnx::ConversionExtension to set the domain paramerter.
Sample Two: aten::uniform
In the OpenVINO™ documentation, the example illustrates basic knowledge of ConversionExtension, like node object of type NodeContext. Real mapping issues like different node modules(or domains), different input types, and missing attributes are under discussion and solved with the workaround.
To support the VectorNet model, try to export the ONNX model from PyTorch. Unfortunately, aten::uniform (ATen is PyTorch’s built-in tensor library) isn’t yet supported by onnx. But OpenVINO™ has RandomUniform operation. Comparing the PyTorch Uniform operation with the RandomUniform operation (generates random numbers from a uniform distribution in the range [minval, maxval)), it shows the same math task with the different input types. Therefore, It’s possible to use Frontend Extensions to map this uniform distribution operation with the onnx model if solving the potential mapping issues. As one-to-one mapping is impossible, decomposition to multiple operations (at least Op Convert additionally) should be considered.
Export Model with Fallback
Because support has not been added to convert a particular torch op to ONNX, we cannot export each ATen op (in the TorchScript namespace “aten”) as a regular ONNX op. So, we fall back to exporting an ATen op with OperatorExportTypes.ONNX_ATEN_FALLBACK.
To optimize the onnx model with OpenVINO™ , create a new sample based on the C++ hello_classification in Linux.
Error: Check 'unknown_operators.empty()' failed at src/frontends/onnx/frontend/src/core/graph.cpp:213: OpenVINO™ does not support the following ONNX operations: org.pytorch.aten.Aten.
Visualize Graph for Mapping
In Netron, we could find 6 ATen nodes with the same input values. The obvious mapping problem is that the attribute uniform of node aten should be the node type, while the additional node’s domain is org.pytorch.aten. So, we use ov::frontend::onnx::conversion to set domain parameter, which is similar to the sample one.

As below, real attributes of PyTorch uniform operation aren’t available in the ONNX. The needed attributes of OpenVINO™ RandomUniform operation are output_type, global_seed, and op_seed.
Note: Types are int32 or int64, while uniform op is float64 in the figure.

As a workaround, we set the seed of attributes as a constant because of the missing aten::uniform attributes.
To solve the difference between aten::uniform and RandomUniform, the mapping issue could be solved as below:
- Use Op ShapeOf to get the 1D tensor of the input shape.
- Use Op Convert to convert the input types from aten::uniform’s f64 to RandomUniform’s i64.
- Use Op Add the input with the Op Constant “117” and Op Multiply with the Op Constant “0.001”, because the output value of the upstream Op ConstantOfShape_output_0 is “0” and the real inputs of all six aten::uniform’s “minval” and “maxval” are “-0.11785113…” and “0.11785113…”.
Add Extension in Practice
Debug steps of the Frontend extension on Windows Visual Studio:
- Add add_extension code into C++ sample and build project
- Debug with onnx file path
Thanks to the NODE_VALIDATION_CHECK from random_uniform Op, the debug is friendly to the new user.
Code sample of the core.add_extension function
See Also